On Orthogonal Polynomials*

Paul G. Nevai
Department of Mathematics and Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53711; and Department of Mathematics, The Ohio State University, Columbus, Ohio 43210

Communicated by I. J. Schoenberg

Received June 3, 1977

Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}>0\right\}_{n=0}^{\infty}$ be given sequences of real members. Putting $p_{-1}=0, p_{0}=\gamma_{0}$ and defining p_{n} for $n=1,2, \ldots$ by

$$
x p_{n-1}(x)=\frac{\gamma_{n-1}}{\gamma_{n}} p_{n}(x)+\alpha_{n-1} p_{n-1}(x)+\frac{\gamma_{n-2}}{\gamma_{n-1}} p_{n-2}(x)
$$

we obtain a system of polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ which by a result of J. Favard (see e.g. [2]) is orthonormal with respect to some positive measure $d \alpha$ acting on the real line. Let

$$
c_{n}=\left|1-2 \frac{\gamma_{n-1}}{\gamma_{n}}\right|+2\left|\alpha_{n-1}\right|+\left|1-2 \frac{\gamma_{n-2}}{\gamma_{n-1}}\right| .
$$

It has been shown in [3] that under the assumption

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}<\infty \tag{1}
\end{equation*}
$$

the measure $d \alpha$ can be written as

$$
d \alpha(x)=\alpha^{\prime}(x) d x+\sum\{\text { jumps outside }(-1,1)\},
$$

where α^{\prime} is positive and continuous on $(-1,1)$ and α^{\prime} vanishes outside $[-1,1]$. At the present time it is not clear, assuming (1), how α^{\prime} behaves near -1 and 1. In case of the Chebyshev polynomials ($\alpha_{n}=0$ for $n=$ $0,1, \ldots, \gamma_{0}=\gamma_{1}=1$ and $\gamma_{n}=2^{n-1}$ for $n=2,3, \ldots$) α^{\prime} is not continuous at -1 and 1. For the Chebychev polynomials of the second kind ($\alpha_{n}=0$ and $\gamma_{n}=2^{n}$ for $\left.n=0,1, \ldots\right) \alpha^{\prime}$ is not positive at -1 and 1 . From the work of G. Szegö (see, e.g., [4]) follows clearly that the measures $d \alpha$ for which

$$
\begin{equation*}
\int_{-\pi}^{\pi} \log \alpha^{\prime}(\cos \theta) d \theta>-\infty \tag{2}
\end{equation*}
$$

[^0]play a very important role in the theory of orthogonal polynomials. Therefore it is natural to ask if (1) implies (2). It is easy to see that under the assumption $\operatorname{supp}(d \alpha)=[-1,1]$ this is indeed the case ([3]). Otherwise the question is still open. It was proved in [3] that
\[

$$
\begin{equation*}
\sum_{n=0}^{\infty} n c_{n}<\infty \tag{3}
\end{equation*}
$$

\]

implies

$$
\alpha^{\prime}(x) \geqslant \operatorname{const}\left(1-x^{2}\right)^{1 / 2}
$$

for $-1 \leqslant x \leqslant 1$. Hence (2) follows from (3). K. M. Case conjectured in [1] that (2) holds whenever

$$
\limsup _{n \rightarrow \infty} n^{2} c_{n}<\infty
$$

The purpose of this note is to show that the weaker condition

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+1) c_{n} \leqslant A \log (m+1) \quad(m=1,2, \ldots) \tag{4}
\end{equation*}
$$

not only implies (2) but also gives a pointwise estimate for α^{\prime}. We will see that, assuming (4), $\log \alpha^{\prime}$ is quite well-behaved. Our plan is the following. First, using an absolutely elementary method, we obtain an estimate for $\left|p_{n}\right|$. This method is somewhat miraculous since we establish an inequality which improves itself when applied repeatedly. Having a bound for $\left|p_{n}\right|$, the corresponding estimate for α^{\prime} follows from a result in [3].

Theorem. Suppose that (4) holds with a suitable constant $A>0$. Then there exist positive constants A_{1}, A_{2} depending only on A and $\inf _{n} \gamma_{n-1} / \gamma_{n}$ such that

$$
\begin{equation*}
\left|p_{n}(x)\right| \leqslant A_{1}\left(1-x^{2}\right)^{-A_{2}} \quad(-1 \leqslant x \leqslant 1) \tag{5}
\end{equation*}
$$

for $n=1,2, \ldots$ and

$$
\begin{equation*}
\alpha^{\prime}(x) \geqslant A_{1}^{-1}\left(1-x^{2}\right)^{A_{2}} \quad(-1 \leqslant x \leqslant 1) . \tag{6}
\end{equation*}
$$

Proof. Let $x \in[-1,1]$ and put $x=\cos \theta$ where $0 \leqslant \theta \leqslant \pi$. Define ϕ_{n} by

$$
\phi_{n}(\theta)=p_{n}(x)-e^{i \theta} p_{n-1}(x) .
$$

Then

$$
\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)=p_{n}(x)-2 x p_{n-1}(x)+p_{n-2}(x)
$$

and, by the recurrence formula,

$$
\begin{align*}
\phi_{n}(\theta) & -e^{-i \theta} \phi_{n-1}(\theta) \\
= & =\left[1-2 \frac{\gamma_{n-1}}{\gamma_{n}}\right] p_{n}(x)-2 \alpha_{n-1} p_{n-1}(x)+\left[1-2 \frac{\gamma_{n-2}}{\gamma_{n-1}}\right] p_{n-2}(x) \tag{7}
\end{align*}
$$

Consequently

$$
\left|\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)\right| \leqslant c_{n} \sum_{k=n \sim 2}^{n}\left|p_{k}(x)\right|
$$

Using again the recurrence formula, we obtain

$$
\begin{equation*}
\sum_{k=n-2}^{n}\left|p_{k}(x)\right| \leqslant K \sum_{k=M-1}^{M}\left|p_{k}(x)\right| \quad(M=n-1, n) \tag{8}
\end{equation*}
$$

where K depends only on $\sup _{n} \alpha_{n}, \inf _{n} \gamma_{n-1} / \gamma_{n}$ and $\sup _{n} \gamma_{n-1} / \gamma_{n}$. Furthermore, from the definition of ϕ_{n} follows that

$$
\begin{equation*}
\left(1-x^{2}\right)^{1 / 2}\left|p_{n}(x)\right| \leqslant\left|\phi_{n}(\theta)\right|, \quad\left(1-x^{2}\right)^{1 / 2}\left|p_{n-1}(x)\right| \leqslant\left|\phi_{n}(\theta)\right| \tag{9}
\end{equation*}
$$

Therefore

$$
\left|\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)\right| \leqslant 2 K c_{n}\left(1-x^{2}\right)^{-1 / 2} \max _{|x| \leqslant 1}\left|\phi_{n-1}(\theta)\right|
$$

Recall that $\phi_{n}-e^{i \theta} \phi_{n-1}$ is a polynomial of degree n in x. Thus by a theorem of S. Bernstein,

$$
\max _{|x| \leqslant 1}\left|\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)\right| \leqslant 2 K c_{n}(n+1) \max _{|x| \leqslant 1}\left|\phi_{n-1}(\theta)\right|
$$

that is

$$
\max _{|x| \leqslant 1}\left|\phi_{n}(\theta)\right| \leqslant \max _{|x| \leqslant 1}\left|\phi_{n-1}(\theta)\right|\left[1+2 K c_{n}(n+1)\right] .
$$

Repeated application of this inequality shows that

$$
\max _{|x| \leqslant 1}\left|\phi_{n}(\theta)\right| \leqslant \gamma_{0} \exp \left\{2 K \sum_{j=1}^{n}(j+1) c_{j}\right\}
$$

Hence by (4),

$$
\begin{equation*}
\left|\phi_{n}(\theta)\right| \leqslant \gamma_{0}(n+1)^{2 K A} \tag{10}
\end{equation*}
$$

for $-1 \leqslant x \leqslant 1$ and $n=0,1, \ldots$. Now we return to (7). Multiplying both sides by $e^{i n \theta}$ and summing for $n=0,1, \ldots, m$, we obtain

$$
\begin{aligned}
e^{i m \theta} \phi_{m}(\theta)= & \sum_{n=0}^{m}\left\{\left[1-2 \frac{\gamma_{n-1}}{\gamma_{n}}\right] p_{n}(x)-2 \alpha_{n-1} p_{n-1}(x)\right. \\
& \left.+\left[1-2 \frac{\gamma_{n-2}}{\gamma_{n-1}}\right] p_{n-2}(x)\right\}
\end{aligned}
$$

Therefore, by (8) and (9),

$$
\begin{equation*}
\left|\phi_{m}(\theta)\right| \leqslant 2 K\left(1-x^{2}\right)^{-1 / 2} \sum_{n=0}^{m} c_{n}\left|\phi_{n}(\theta)\right| \tag{11}
\end{equation*}
$$

Using inequality (10), we get

$$
\left|\phi_{m}(\theta)\right| \leqslant 2 K \gamma_{0}\left(1-x^{2}\right)^{-1 / 2} \sum_{n=0}^{m} c_{n}(n+1)^{2 K A}
$$

If $2 K A<1$, then by (4) and (9), the estimate (5) follows. Suppose that $2 K A>1$. Then using (4), we obtain

$$
\begin{aligned}
\left|\phi_{m}(\theta)\right| & \leqslant 2 K \gamma_{0}\left(1-x^{2}\right)^{-1 / 2}(m+1)^{2 K A-1} \sum_{n=0}^{m} c_{n}(n+1) \\
& \leqslant 2 K A \gamma_{0}(m+1)^{2 K A-1} \log (m+1)\left(1-x^{2}\right)^{-1 / 2}
\end{aligned}
$$

which is much better that (10). Now plug this inequality into (11). If $2 K A-1<1$, then (5) follows. Otherwise we get a new estimate which we again plug into (11). After finitely many similar steps we obtain

$$
\left|\phi_{m}(\theta)\right| \leqslant B_{1}\left(1-x^{2}\right)^{-B_{2}}
$$

for $-1 \leqslant x \leqslant 1$ and $n=1,2, \ldots$ which, combined with (9), yields (5). The inequality (6) follows from (5) and Theorem 7.5 of [3].

Finally we note that the example of Jacobi polynomials shows that apart from the constants A_{1} and A_{2}, our result cannot be improved.

References

1. K. M. Case, Orthogonal polynomials revisited, in "Theory and Application of Special Functions" (R. A. Askey, Ed.), pp. 289-304, Academic Press, New York, 1975.
2. G. Freud, "Orthogonal Polynomials," Pergamon, New York, 1971.
3. P. G. Nevai, Orthogonal Polynomials, Mem. Amer. Math. Soc., in press.
4. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1967.

[^0]: * Research sponsored by United States Army under Contract No. DAAG29-75-C-0024, and National Science Foundation under Grant No. MCS75-006687.

